未来产业

潘建伟回应“量子加密惊现破绽”:该类攻击早已有解决方案

过去二十年间,国际学术界在现实条件下量子保密通信的安全性上做了大量的研究工作,信息论可证的安全性已经建立起来。
潘建伟回应“量子加密惊现破绽”:该类攻击早已有解决方案
(图片: Pixabay)

近来,某微信公众号发表了一篇题为“量子加密惊现破绽”的文章,宣称“现有量子加密技术可能隐藏着极为重大的缺陷”。其实该文章最初来源于美国《麻省理工科技评论》的一篇题为“有一种打破量子加密的新方法”的报道,该报道援引了上海交通大学金贤敏研究组的一篇尚未正式发表的工作。

此文在微信号发布后,国内很多关心量子保密通信发展的领导和同事都纷纷转来此文询问我们的看法。事实上,我们以往也多次收到量子保密通信安全性的类似询问,但一直未做出答复。这是因为学术界有一个通行的原则:只对经过同行评审并公开发表的学术论文进行评价。但鉴于这篇文章流传较广,引起了公众的关注,为了澄清其中的科学问题,特别是为了让公众能进一步了解量子通信,我们特撰写此文,介绍目前量子信息领域关于量子保密通信现实安全性的学界结论和共识。

现有实际量子密码(量子密钥分发)系统主要采用BB84协议,由Bennett和Brassard于1984年提出。与经典密码体制不同,量子密钥分发的安全性基于量子力学的基本原理。即便窃听者控制了通道线路,量子密钥分发技术也能让空间分离的用户共享安全的密钥。学界将这种安全性称之为“无条件安全”或者“绝对安全”,它指的是有严格数学证明的安全性。20世纪90年代后期至2000年,安全性证明获得突破,BB84协议的严格安全性证明被Mayers,Lo,Shor-Preskill等人完成。

后来,量子密钥分发逐步走向实用化研究,出现了一些威胁安全的攻击,这并不表示上述安全性证明有问题,而是因为实际量子密钥分发系统中的器件并不完全符合上述(理想)BB84协议的数学模型。
归纳起来,针对器件不完美的攻击一共有两大类,即针对发射端--光源的攻击和针对接收端--探测器的攻击。

“量子机密惊现破绽”一文援引的实验工作就属于对光源的木马攻击。这类攻击早在二十年前就已经被提出,而且其解决方案就正如文章作者宣称的一样,加入光隔离器这一标准的光通信器件就可以了。该工作的新颖之处在于,找到了此前其他攻击没有提到的控制光源频率的一种新方案,但其对量子密码的安全性威胁与之前的同类攻击没有区别。尽管该工作可以为量子保密通信的现实安全性研究提供一种新的思路,但不会对现有的量子保密通信系统构成任何威胁。其实,自2000年初开始,科研类和商用类量子加密系统都会引入光隔离器这一标准器件。举例来说,现有的商用诱骗态BB84商用系统中总的隔离度一般为100dB,按照文章中的攻击方案,需要使用约1000瓦的激光反向注入。如此高能量的激光,无论是经典光通信还是量子通信器件都将被破坏,这就相当于直接用激光武器来摧毁通信系统,已经完全不属于通信安全的范畴了。

墨子沙龙
订阅新闻电邮