科技

陈建文:如何提升“大”数据的价值与共识?

为数据提供者提供一个正确激励机制的环境,创造的数据能被价值化、共识化,这样就会形成一个庞大的数据市场,使得人工智能也能够更往前进一步。

1月10日,在智慧能源平行论坛现场,电子科技大学教授陈建文进行了题目为“智能产业落地中的供需关系”的主题演讲。陈建文提到,AI目前一个很大的瓶颈是:如果AI要非常大的进步,它必然是需要很大的数据,但是现在的数据提供方都没有足够的激励机制提供极大量的数据。并且已有的那些数据往往被中心化平台垄断,因而阻碍创新。为数据提供者提供一个正确激励机制的环境,创造的数据能被价值化、共识化,这样就会形成一个庞大的数据市场,使得人工智能也能够更往前进一步。

AI大爆发助力“大数据”资源迭起

论坛现场,陈建文首先对人工智能行业发展进行了五个方面的综述:人工智能诞生、人工智能低估、人工智能高潮、人工智能低潮、人工智能浪潮。相关资料显示,1956年7月,Marvin Minsky等一批有远见的年轻科学家在Dartmouth学会上提出了人工智能这一新的学科;1970-1980年,大规模数据和复杂任务不能完成,计算能力无法突破,人工智能进入了发展瓶颈期;1982年证明神经网络具有很强的学习能力,他可以完成任务,解决很多实际问题。由此,人工智能进入到了第二次高潮期,并且进入发展黄金期。

到了九十年代初期,DARPA没有实现,新任领导认为人工智能并不是下一个浪潮,导致人们“专家系统”的狂热追捧逐步降温,政府对人工智能的研究投入缩减,人工智能进入第二次低潮期。2006年,机器学习大师、多伦多大学教授Geoffrey Hinton提出的深度学习在研究领域和应用领域的发起热潮,人工智能进入第三次的发展浪潮。2016年,AlphaGo战胜韩国围棋选手李在石再次引爆全球对人工智能的关注与研究。

基于AI的产业发展历程以及爆发现状,陈建文在会议上提出“人工智能的爆发为何是现在?”这个问题,并从以下三点给予了回答:

第一是摩尔定律所描述的计算能力的指数增长。在过去五六十年当中,按照摩尔定律在增长,所谓摩尔定律指我们的计算能力每过18个月翻一倍。计算能力增长,我们过去不能进行的计算现在都能计算了。

第二是互联网和物联网的爆发性增长所产生的海量数据。有了大量的数据,人工智能就能通过大量数据汇集得到学习,而我们每个生活的角落都将数据化。

第三是智能算法的快速发展。人一开始会模拟大脑工作的原理来做出一些人工智能、机器学习的算法,但是在今后发展过程中,我们可能会推出一些算法,是大脑根本不能实现的,但是在机器里面却能够实现,比如说量子计算。

亿欧
订阅新闻电邮